深圳市御嘉鑫科技股份有限公司
中文繁体 | English | Japanese   
工艺介绍  工艺介绍
医疗器械配件  你当前的位置:首页 > 工艺介绍 > 详细工艺说明

微小齿轮的金属粉末注射成型(MIM)技术
 

发布日期:[2020/12/1]
 

1微小齿轮MIM生产工艺过程及参数选择

大批量生产某微小齿轮的工艺参数及其主要参数的实验选择方法。

 


2金属粉末及粘结剂的选择
MIM工艺所用金属粉末颗粒尺寸一般在0.5-20 μm。从理论上讲,颗粒越细,比表面积也越大,易于成型和烧结。目前生产MIM用粉末的主要方法有:水雾化法、气体雾化法、拨基法。每种方法各有其优缺点:水雾化法是主要的制粉工艺,其效率高、大规模生产比较经济,可使粉末细微化,但形状不规则,这有利于保形,可是用粘结剂较多,影响精度。此外,水与金属高温反应形成的氧化膜妨碍烧结。气体雾化法是生产MIM用粉的主要方法,它生产的粉末为球形,氧化程度低,所需粘结剂少,成形性好,但价格高,保形性差。拨基法生产的粉末纯度高、粒度极细,它最适合于MIM ,但仅限于Fe, Ni等粉体,不能满足材料多品种的要求。为了满足MIM用粉的要求,许多制粉公司对上述方法进行了改进,还发展了微雾化、层流雾化等制粉方法。选用粉末要从MIM技术、产品形状、性能、价格等多方面综合考虑,现在通常是水雾化粉和气雾化粉混合使用,前者提高振实密度后者维持保形性。由于该齿轮使用在腐蚀性的环境中,故而采用水雾化316L不锈钢粉末,其化学成分(质量分数)为,Cr:17. 0%,N:11.5%, Mo:2.2%,C:不大于0.3%,Fe:69%左右。其物理性质如表1。

 


在MIM中工艺,粘结剂起着十分重要的作用,它直接影响着混合、注射成形、脱脂等工序,对注射成形坯的质量、脱脂及尺寸精度、合金成分等有很大的影响。MIM所使用的粘结剂包括热塑性体系、热固性体系、水溶性体系、凝胶体系及特殊体系,它们各有其优缺点,热塑性粘结剂体系是MIM粘结剂的主流和先导,热固性体系粘结剂应用较少,虽然这类粘结剂的保形性好,但是脱除比较困难。在此,粘结剂采用热塑性粘结剂,其配方为70%的石蜡和30%高密度聚乙烯。

 

3混炼、制粒与注射成形
粉末和粘结剂确定后要进行混炼,混炼是一个复杂的改善粉末流动性和完成分散的过程。常用的混炼装置有双螺杆挤出机、Z形叶轮混料机、双行星混炼机等,目前正在发展连续混炼工艺。混炼时的加料速率、混炼温度、转速等都会影响混炼的效果。在此将粉末和粘结剂按63 : 37的装载量(体积分数)在双行星混炼机上混炼1.5 h,混炼温度为130土10℃,使粉末和粘结剂充分混合然后在单螺杆挤出装置上制粒,制粒温度采用130℃-150℃,螺杆旋转转速为40 r/min。使用TMC60EV型注射机注射成形。注射成形关键问题之一是有关成形的各项设计,其中包括产品设计、模具设计。尽管目前生产的产品可从0.003 g-200 g,而且在改进精度方面已取得了重要进步,然而大多数设计特别是模具设计是凭经验,缺少可靠的设计知识,CAD系统难以很好地应用于MIM。现已运用塑料模具的原理逐步将MIM的模具标准化,随着经验的积累,模具设计和制作的时间将会大大减少,尽可能多地使用多模腔模具以提高注射效率。


注射成形的目的是获得所需形状的无缺陷成形坯,注射缺陷在后续工艺中不可消除,因此这个步骤要严格控制。采用超声检测技术可检测出注射成形坯的内部缺陷。注射阶段的缺陷控制目前主要还是凭经验操作。随着科学技术的进步,采用计算机模拟喂料的注射充模过程,并将其和喂料性能等相联系,优化注射条件参数,消除注射缺陷是目前先进的实验手段,也是未来的发展趋势。国外有报道将moldflow应用于MIM注射过程分析,并取的较好效果,我们也试应用该技术,但发现模拟结果与实验结果不能很好符合,这方面还有待与进一步研究。

 

4脱脂与预烧结
脱脂方法采用热脱脂,热脱脂工艺要根据粘结剂组元的热分解特性合理确定,同时还要防止因为脱脂速度过快,使脱脂坯产生鼓泡、开裂等缺陷。由于不锈钢粉对含碳量十分敏感,因此要选择还原性气氛,防止因粘结剂分解而产生残碳,在室温到200℃的温度区内主要为石蜡的分解,本工艺过程中粘结剂中石蜡为最主要的组份,因此为了成功脱除石蜡,加温速度一般要低于1℃/min。本工艺的脱脂炉内是氢气气氛,脱脂温度为200℃以下以0.8℃/min的加热速度升温,待温度达到200℃时保温1.5 h,然后以1.5℃/min的速度升至450℃保温h,以脱去粘结剂的聚合物组元高密度聚乙烯,并形成连通孔。450℃以后用4℃/min的速度快速升温至800℃后保温45 min,使粘结剂中的聚合物组份完全分解,并完成脱脂和毛坯的预烧结。

 

 

5烧结
烧结在真空烧结炉中进行,真空度为0.1 Pa,


烧结过程为:开始以4℃/min的升温速度升至1000℃,保温45 min,再以6 ℃/min快速升至烧结温度1 380 ±10(℃),保温45 min,然后随炉冷却至常温。烧结温度应尽可能稳定,烧结温度波动几十摄氏度,可导致烧结密度波动10%,收缩率改变3%。

最终产品的尺寸精度及机械性能:

成品零件(如图3),对与零件一同备制的标准试样进行了金相分析和力学性能试验。零件的金相组织为纯奥氏体,其力学性能试验结果:屈服强度为220 MPa,拉伸强度为510 MPa,延伸率为45%,

任取10件测得其平均密度为理论密度得98. 8%。基本达到了理论上的性能指标,满足使用要求。结构及尺寸均满足精度要求,不需要加工处理。

 




铝型材自动切割机 |  金属粉末冶金 |  御豪达电镀 |  御嘉鑫国际站 |  MIM金属注射成型加工 |  电锅炉 |