email info@szyujiaxin.com
Shenzhen Yujiaxin Tech Co., Ltd. SHENZHEN YUJIAXIN TECH CO.,LTD.
Presse
Produktanzeige
Kontaktieren Sie uns
  • Email: info@szyujiaxin.com
  • Skype: +8615986816992
  • Whatsapp: +8615986816992
  • Wechat: yujiaxin-666
  • QQ: 2269845694
Ihr aktueller Standort > Startseite > detailliert

Material- und Fertigungsherausforderungen flexibler Faserroboter Laser chirurgischer Messer



Datum:[2024/3/4]
Physikalische Wissenschaft
Am Februar 1, 2024 veröffentlichte ein Team um Akademiker Yang Guangzhong vom Medical Robotics Research Institute der Shanghai Jiao Tong Universität und Professor Tao Guangming von der Huazhong University of Science and Technology gemeinsam einen Ausblick-Artikel mit dem Titel "Flexible Faserlaserwaagen: Material and fabrication challenges" online in der Zeitschrift Matter of Cell Press Cell Press.
Der Beitrag geht auf die grundlegenden Arbeitsmechanismen und Einsatzmöglichkeiten von Laserchirurgischen Messern und Kontinuumsrobotertechnologie ein, diskutiert deren Forschungsfortschritt auf dem Gebiet der präzisionschirurgischen Medizin, und schlägt die Vorteile und großen Herausforderungen flexibler Faserroboter-Laser-OP-Messer als potenzielle neue minimalinvasive chirurgische Verarbeitungstechnologie zur Verbesserung der Funktionalität und klinischen Anpassungsfähigkeit intelligenter medizinischer Roboter vor. Er sieht auch der künftigen Ausrichtung dieses Bereichs erwartungsvoll entgegen.
Die minimalinvasive Chirurgie hat einzigartige Vorteile wie Sicherheit, kleiner Schnitt und schnelle postoperative Erholung, die die Entwicklung der Präzisionschirurgie stark fördert. Mit der Entwicklung der modernen Medizin und Bioengineering haben sich chirurgische Messer von einzelnen Metallmessern zu Ultraschallmessern, hochfrequenten elektrischen Messern usw. entwickelt und die chirurgische Effizienz erheblich verbessert. In komplexen chirurgischen Szenarien haben chirurgische Messer jedoch Probleme wie große Gerätegröße, starke Steifigkeit und unzureichende Manövrierbarkeit, die die Wirksamkeit der chirurgischen Behandlung ernsthaft verringern. Das Aufkommen der laserchirurgischen Messertechnologie ist ein wichtiger Meilenstein im Bereich der Präzisionschirurgie und medizinischen Versorgung. Zahlreiche klinische Studien haben gezeigt, dass es signifikante Vorteile wie hohe Ablationsgenauigkeit und Effizienz, weniger Blutungen und minimale Seitenschäden hat. Es hat breite Anwendungsaussichten in der minimalinvasiven chirurgischen Gewebeverarbeitung. Die hohen Anforderungen an die mechanische und optische Leistungsfähigkeit von kleinskaligen flexiblen Laserenergieträgern in der minimalinvasiven Chirurgie sowie die Grenzen der Integrationsmethode zwischen Transfermedien und medizinischen Robotern stellen jedoch große Herausforderungen an die tiefgreifende Anwendung der Laserskalpelltechnologie in der minimalinvasiven Chirurgie dar.
Im Gegensatz zu herkömmlichen chirurgischen Werkzeugen, die auf mechanischer Bearbeitung basieren, erzielen Laser-chirurgische Messer eine effiziente biologische Gewebebearbeitung durch ihre einzigartigen Gewebe-optischen Effekte. Der Artikel behandelt die Mechanismen der photothermischen Ablation und photomechanischen Ablation für Weich- und Hartgewebsresektion und diskutiert den Forschungsfortschritt der wasservermittelten und ultrakurzpulsigen Lasertechnologie zur Linderung thermischer Schäden wie Gewebekondensation und Karbonisierung (Abbildung 1). Darüber hinaus analysiert der Artikel die Eigenschaften, Vorteile und Anwendungswert von medizinischen Infrarot-Lichtquellen, die hauptsächlich aus Nd-, Ho-, Tm-, Er- und CO2-Lasern in verschiedenen chirurgischen Bereichen wie Zahnmedizin und Urologie bestehen, und betont die erheblichen Herausforderungen, die der Fortschritt der neuen chirurgischen Laserlichtquellentechnologie zur Flexibilität, Stabilität bringt. und Steuerbarkeit von Laserübertragungsmedien.
Als Schlüsselkomponente im Laser-chirurgischen Messersystem muss das Laserübertragungsmedium die Laserenergie stabil an bestimmte Operationsstellen liefern. Der Artikel befasst sich systematisch mit dem Forschungsstatus der drei wichtigsten medizinischen Laserübertragungsmedien: Lichtleiterarm, Hohlwellenleiter und Infrarotfaser und betont die potenzielle Anwendung kleiner, hochflexibler Infrarotfasergeräte in der minimalinvasiven chirurgischen Medizin. Der Artikel analysiert umfassend den Forschungsfortschritt von Infrarot-Faseroptikgeräten, vergleicht die Geräteleistung von Fasern im Er-Laser und CO2-Laser aus den Perspektiven der Laserübertragungsschwelle, des optischen Verlustes und der mechanischen Flexibilität (Abbildung 2), und weist darauf hin, dass hohe optische Verluste und geringe mechanische Festigkeit die Schlüsselfaktoren sind, die die tiefe Anwendung von Infrarot-Glasfasergeräten in der Chirurgie einschränken. In den letzten Jahren hat die schnelle Entwicklung der Multimaterialfasertechnologie zur hochintegrierten Integration von Verbundwerkstoffen mit verschiedenen physikalischen Eigenschaften wie Licht, Kraft, Elektrizität und Magnetismus geführt. Bereitstellung zuverlässiger Forschungsunterstützung für die Entwicklung von optischen Fasern mit hoher Flexibilität und geringem Verlust im mittleren Infrarot und weitere Verbesserung der Funktionalität von chirurgischen Instrumenten.
Die präzise Steuerung chirurgischer Instrumente ist ein wichtiger Faktor für eine effiziente und minimalinvasive Chirurgie. Die rasante Entwicklung der Werkstoff- und Bioingenieurdisziplinen hat die Forschung an kontinuumschirurgischen Robotern mit unterschiedlichen Fahrmethoden zur Förderung der Entwicklung der präzisionschirurgischen Medizin geführt. Der Beitrag analysiert umfassend den Antriebsmechanismus und die Eigenschaften bestehender Kontinuumsroboter (Abbildung 3),
Wir weisen auf das enorme Potenzial von Kontinuumsrobotern hin, die auf magnetischem Fahren für sichere, präzise und intelligente chirurgische Eingriffe basieren. Darüber hinaus schlägt der Artikel das Konzept der flexiblen Faserroboter Laser Chirurgiemesser vor. Die Kombination von Laser-OP-Messern und medizinischen Kontinuumsrobotern hat ihre breiteren klinischen Anwendungen gefördert. Diese Systeme wurden erfolgreich in der Urologie, Gynäkologie und HNO-Chirurgie eingesetzt.
Um sich an komplexere klinisch-physiologische Strukturen und chirurgische Umgebungen anzupassen, ist es notwendig, die Funktionalität chirurgischer Instrumente weiter zu verbessern. Der Beitrag konzentriert sich auf den Forschungsfortschritt medizinischer Roboter in der Positionierung, Bildgebung und Informationswahrnehmung und untersucht die Entwicklung, Eigenschaften und Anwendungspotenziale von Technologien wie Positionierungssystemen auf Basis von elektromagnetischen Tracking (EM) und Bragg-Gittersensoren (FBG), bildgebenden Systemen auf Basis von Ladungsgekoppelten Elementen (CCD/CMOS) und Faserbündeln, Krafterfassung, und Temperaturmessgeräte. Darüber hinaus schlägt der Artikel ein flexibles Faserroboter-Laser-OP-Messer vor, das auf einer Kontinuum-Roboterarchitektur basiert und Positionierungs-, Abbildungs- und Wahrnehmungsfunktionen integriert. Es besteht aus einem kontinuierlichen Roboterskelett und funktionalen Geräten. Seine Kernfunktionen sind Laserablation, Fahren und Informationserfassung, die durch Laserübertragungsmedien, Antriebsmodule und Sensoren im Roboterskelett erreicht werden (Abbildung 4).
Die innovative Entwicklung chirurgischer Instrumente ist ein wichtiger Faktor für den rasanten Fortschritt der präzisionschirurgischen Medizintechnik. Laserchirurgische Skalpelle entwickeln sich ständig in Richtung kleiner, hochflexibler und effizienter Richtungen und haben viele Durchbrüche im klinischen Bereich erzielt, indem sie tief in funktionale Geräte wie Navigationssteuerung, Positionierung, Bildgebung und Informationswahrnehmung integriert sind, um die Bedürfnisse von engeren und komplexeren chirurgischen Umgebungen zu erfüllen. Am Ende des Artikels werden die Vorteile und großen Herausforderungen zukünftiger flexibler Faserroboter-Lasermesser in der Präzisionschirurgie zusammengefasst und die zukünftige Entwicklungsrichtung in diesem Bereich diskutiert (Abbildung 5): (1) Material, Struktur und Herstellung von Laserübertragungsmedien werden diskutiert. Durch die Innovation von biokompatiblen Hochleistungsmaterialien und die Entwicklung von Hochleistungswellenleiterstrukturen, kombiniert mit fortschrittlichen Faserherstellungsmethoden, wird eine stabile und effiziente Entwicklung flexibler Laserübertragungsmedien für die medizinische Laserleistung erreicht. (2) Das Fahren, Modellieren und Erfassen von medizinischen Robotern zielt darauf ab, den Antriebsmechanismus und das neue strukturelle Design von medizinischen Robotern in engen anatomischen Räumen zu erforschen und eine präzise und sichere chirurgische Diagnose und Operation zu erreichen. (3) Die Entwicklung von Multimaterialfasergeräten stellt flexiblere und intelligentere chirurgische Werkzeuge für den klinischen Eingriff zur Verfügung. (4) Das Design und die Herstellung von Mikronanostrukturen an Faseroptikspitzen bereichern die multimodalen Operationsstrategien von Faserrobotern. (5) Die verteilte Erfassung auf der faseroptischen Seitenoberfläche bietet Robotern die Fähigkeit, lokale Umweltinformationen genau zu erhalten.

Zou Yuqi, Ren Zhihe, Xiang Yuanzhuo, Doktoranden der Huazhong University of Science and Technology, und Liu Chao, Masterstudenten der Huazhong University of Science and Technology, sind die Co-Erstautoren des Artikels. Der Akademiker Yang Guangzhong von der Shanghai Jiaotong Universität und Professor Tao Guangming von der Huazhong University of Science and Technology sind die Co-korrespondierenden Autoren des Artikels. Zu den Kooperationseinheiten gehört auch das Xi'an Institut für Optik und Feinmechanik der Chinesischen Akademie der Wissenschaften. Diese Arbeit wurde von Projekten wie dem National Key Research and Development Program, der National Natural Science Foundation of China und dem Cross Research Support Program der Huazhong University of Science and Technology unterstützt.

Abbildung 1: Laserablationsmechanismus und klinische Anwendung.

Abbildung 2 Typische mittelinfrarote Glasfasergeräte und ihr Leistungsvergleich.

Abbildung 3 Fahrmethode des medizinischen Kontinuumsroboters.

Abbildung 4: Ein multifunktionaler Kontinuumsroboter, der Lokalisierung, Bildgebung und Wahrnehmung ermöglicht.

Abbildung 5: Zukünftiges flexibles Laser-chirurgisches Messer des Faserroboters.